Abstract

Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data. On the other hand, more data-driven approaches such as machine learning models require large volumes of data to produce generalizable models. The integration of neural networks and mechanistic models, forming universal differential equation (UDE) models, enables the automated learning of unknown model terms with less data than the neural network alone. Nevertheless, estimating parameters for these hybrid models remains difficult with sparse data and limited sampling durations that are common in biological applications. In this work, we propose the use of physiology-informed regularization, penalizing biologically implausible model behavior to guide the UDE towards more physiologically plausible regions of the solution space. In a simulation study we show that physiology-informed regularization not only results in a more accurate forecasting of model behaviour, but also supports training with less data. We also applied this technique to learn a representation of the rate of glucose appearance in the glucose minimal model using meal response data measured in healthy people. In that case, the inclusion of regularization reduces variability between UDE-embedded neural networks that were trained from different initial parameter guesses.